The environmental debate surrounding new deep-sea mining technologies

https://i.guim.co.uk/img/media/d558e979fdcbc3d18c621e483d05fe0a8d4cea70/0_67_2048_1229/master/2048.jpg?width=1200&height=900&quality=85&auto=format&fit=crop&s=1cee835841f66ad63d7a0ee0b7b9258e

The ocean’s depths have always fascinated people due to their abundant resources, and advancements in technology are making the concept of deep-sea mining more attainable. Central to this burgeoning field are polymetallic nodules—tiny, metal-rich stones found on the ocean bed. These nodules are rich in crucial elements like manganese, nickel, and cobalt, vital for sustainable energy tech and highly sought-after products, such as batteries. However, as mining technology progresses, debates among experts about the ecological effects of this practice persist.

The depths of the ocean have long held an allure for their untapped resources, and technological strides are bringing the dream of deep-sea mining closer to reality. Polymetallic nodules—small metallic-rich rocks scattered across the ocean floor—are at the center of this growing industry. These nodules contain valuable materials such as manganese, nickel, and cobalt, which are essential for renewable energy technologies and high-demand products like batteries. But as the technology for mining these resources advances, the question of its environmental impact continues to divide experts.

One such technological breakthrough came from Impossible Metals, a company that recently tested their autonomous mining robot in shallow waters. The robot, equipped with camera systems and AI-powered algorithms, demonstrated its ability to identify and avoid marine life while collecting nodules. Designed to minimize disturbance, the robot’s claw-like arms gently pluck rocks from the seabed while emitting minimal sediment. Oliver Gunasekara, CEO of Impossible Metals, claims the system is 95% accurate at detecting lifeforms as small as 1 millimeter and aims to further refine the technology to reduce sediment clouds during operations.

The ecological risks of harvesting from the ocean depths

The allure of deep-sea mining is rooted in its potential to obtain essential materials needed for the energy shift. Metals such as cobalt and nickel are crucial for electric cars and renewable energy storage, with advocates suggesting that accessing ocean floor resources could lessen reliance on environmentally harmful land-based mining. Nevertheless, the deep sea represents one of the most unexplored and least comprehended ecosystems on the planet, raising significant concerns over the possible repercussions of mining activities.

Jessica Battle, who spearheads the World Wildlife Fund’s (WWF) worldwide initiative opposing deep-sea mining, cautions that no technology can entirely prevent the inevitable damage associated with extracting nodules. “Mining would take away the substrate crucial for the survival of numerous marine species,” she states. Despite robots being engineered to bypass living organisms, the extraction of nodules could disturb whole ecosystems, as some creatures utilize these rocks as their homes.

Historical data also presents warnings. In 1979, trial deep-sea mining gear created marks on the Pacific ocean floor that are still apparent today. Scientists discovered that the wildlife in these affected zones has not completely rebounded, even after over forty years. The prolonged impacts of sediment plumes, acoustic disturbances, and possible chemical pollutants contribute additional uncertainties regarding the ecological outcomes.

John Childs, a professor at Lancaster University, shares these apprehensions, noting that the leading opinion among scientists is to refrain from disrupting the deep sea until its ecosystems are more comprehensively studied. “If you’re unaware of what lies beneath, the most prudent action is to avoid interference,” he remarks.

The daring steps and tech breakthroughs of the industry

In spite of the opposition, deep-sea mining companies are progressing, motivated by the increasing global need for rare metals. Impossible Metals is among the organizations aiming to spearhead this movement by integrating robotics with environmental concerns. The company is presently developing a larger iteration of its robotic system, encased in a 20-foot shipping container, with intentions for commercial-scale activities. This updated model will be equipped with 12 robotic arms designed to gather nodules and transfer them to surface vessels, avoiding conventional tethered systems that produce excessive noise pollution.

Despite the backlash, deep-sea mining firms are forging ahead, driven by the growing global demand for rare metals. Impossible Metals is one of several companies hoping to lead the charge by combining robotics and environmental considerations. The company is currently building a larger version of its robotic system, housed in a 20-foot shipping container, with plans for commercial-scale operations. This new model will feature 12 robotic arms capable of harvesting nodules and transferring them to surface ships, bypassing traditional tethered systems that generate excessive noise pollution.

Other companies are investigating different approaches. Norwegian-based Seabed Solutions is creating a saw-based cutting tool aimed at extracting mineral-rich layers while causing minimal sediment disruption. Their system employs pressurized shields and suction mechanisms to contain debris spread. Likewise, Gerard Barron, CEO of The Metals Company, is hopeful about his firm’s capacity to lessen the effects of mining operations. The company, concentrating on nodule collection in the Pacific Ocean, has tested equipment that reportedly confines sediment plumes to a few hundred meters around the mining site.

Barron labels the objections to deep-sea mining as “virtue signaling” and is confident that the industry will advance significantly under the Trump administration’s anticipated second term, which he suggests favors resource extraction. His company intends to submit an application to the International Seabed Authority (ISA) later this year, with the goal of commencing operations once regulations are in place.

Harmonizing progress with ecological stewardship

Although certain companies assert they have created methods that reduce damage, experts remain doubtful about the possibility of genuinely sustainable deep-sea mining. Ann Vanreusel, a marine biologist at Ghent University, notes that even if issues like sediment clouds and noise pollution were resolved, the extraction of nodules would still disturb ecosystems. Numerous marine species rely on these rocks as a base for survival, and their absence could lead to cascading impacts on biodiversity.

While some companies claim to have developed systems that minimize harm, experts remain skeptical about the feasibility of truly sustainable deep-sea mining. Ann Vanreusel, a marine biologist at Ghent University, points out that even if sediment clouds and noise pollution were eliminated, the removal of nodules would still disrupt ecosystems. Many marine organisms depend on these rocks as a foundation for survival, and their loss could have cascading effects on biodiversity.

Moreover, the cultural importance of the ocean to Indigenous communities is significant. Deep-sea mining might disrupt these traditions, leading to ethical questions regarding the exploitation of common global resources.

Additionally, the cultural significance of the ocean to Indigenous communities cannot be overlooked. Deep-sea mining could interfere with these traditions, raising ethical concerns about the exploitation of shared global resources.

A contested future for deep-sea mining

As the debate continues, one thing is clear: the development of international regulations will play a crucial role in determining the future of deep-sea mining. The ISA, the authority tasked with overseeing seabed resource extraction, is expected to release its first set of rules this year. These regulations will likely shape how companies operate and how environmental impacts are managed.

For now, no commercial deep-sea mining operations are underway, but the technology and interest are advancing rapidly. Companies like Impossible Metals and The Metals Company remain determined to lead the charge, touting innovations that they claim will minimize harm while meeting global demand for critical materials. However, the skepticism from environmental groups, researchers, and some policymakers suggests that significant hurdles remain.

As the world grapples with the dual challenges of transitioning to clean energy and preserving natural ecosystems, the question of whether deep-sea mining is a solution—or a new problem—will be central to the conversation. Whether these technological advancements can coexist with environmental stewardship remains to be seen, but the stakes could not be higher for the planet’s most mysterious frontier.

By Lily Chang

You May Also Like